COMPETITION GRADE LONG THROW DEEP BASS SUBWOOFER

UPC: 5060905111923

INSTALLATION POINTS

Failure to observe will invalidate warranty.

- Do not run this subwoofer infinite baffle.
- Ensure that enough clean power is available.
 Do not rely on amplifier published information to set gain controls.
- Perform break in for several hours at medium level before use

DETAILED TECHNICAL DATA

Power Handling (Per Driver):	3500 WRMS (@0%Thd)
Nominal Impedance:	1+1 ohm
DC Impedance :	0.9+0.9 ohm
Voice Coil:	88.5 mm
Voice Coil Layers :	4 Layers Round Wire
Magnet:	230 mm x 60 mm
Magnet Type:	Y35 333 Oz Ferrite

TEAM TIPS

This is an extreme subwoofer, designed for use to create extreme sound. Time spent building a solid, high quality enclosure will be rewarded with performance. Glue and screw all joint lines and seal with silicone afterwards.

Pay attention to fixing the woofer to the enclosure. We recommend T nuts or captive nuts. We do not recommend the use of self tapping screws.

• Ensure to use a very thick baffle plate for the installation.

Optimal Frequency Response: 30>100Hz

BOX COMPATIBILITY

Ported

701 itres

30>50Hz

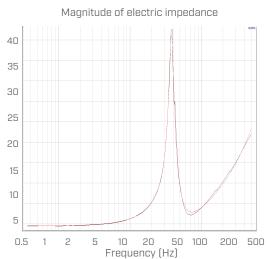
24.8"2>34"2

Recommended Box Type:

Example Box Size:

Example Port Cross

Sectional Area (CSA):

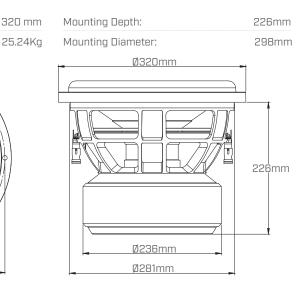

Recommended Tuning

Frequency:

- Remember, the function of a subwoofer is to move air. If you can feel vibration in the structure that is effectively wasted energy. The best systems minimise wasted energy and move the most air.
- Remember, more cone area gives more SPL. There is a limit to what a given amount of cone area can produce.

Name	Value	Unit	Note	Name	Value	Unit	Note
RE	0.45	OHM	Electrical voice coil resistance at DC	BL	8.578	N/A	Force factor BL product
KRM	0.0014	OHM	Wright inductance model	LAMBDA	0.042		Suspension creep factor
ERM	0.86		Wright inductance model	ΟTΡ	0.665		Total Q factor considering all losses
KXM	0.0081	OHM	Wright inductance model	QMS	5.675		Mechanical Q factor of driver in free air
EXM	0.70		Wright inductance model				considering RMS only
CMES	5213.96	UF	Electrical capacitance representing moving mass	QES	0.561		Electrical Q factor of driver in free air considering RE only
LCES	ES 3.31	MH	Electrical inductance representing driver		0.510		Total Q factor considering RE and RMS only
LULU	0.01		compliance		18.8129		Equivalent air volume of suspension
RES	4.52	OHM	Resistance due to mechanical losses	МQ	0.181	%	Ref. efficiency (2 PI radiation using RE)
FS	38.3	ΗZ	Driver resonance frequency	LM	84.78	DB	Sound pressure level (SPL at 1M for 1W @ RE)
MMS	383.614	G	Mechanical mass of driver diaphragm				
			assembly including air load and coil	LMOM	85.27	DB	Nom. sensitivity (SPL at 1M for 1W @ ZN)
MMD	369.305	G	Mechanical mass of voice coil and diaphragm without air load	RMSE Z	6.27	%	Root mean square fitting error of driver impedance Z(F)
RMS	16.262	KG/S	Mechanical resistance of total driver losses	RMSE HX	3.37	%	Root mean square fitting error of
CMS 0.045	0.045	045 MM/N	Mechanical compliance of driver				transfer function HX(F)
			suspension	SD	543.25	CM2	Diaphragm area
KMS	22.20	N/MM	Mechanical stiffness of driver suspension	XMAX	23	mm	Total linear movement

FREQUENCY VS IMPEDANCE



TECHNICAL DRAWING

Total Diameter:

Ø298mm

